发货:3天内
发送询价
耐热板从其主平面来看包括两个区域:至少一个通道区域,该区域包括至少一个让所述液体金属通过的通道孔,并由一种选定的组合物构成,以抵抗由于所述液体金属穿过孔眼流动产生的应力。和一个遏止液体金属流动的运作区,该区由一种与通道区用的组合物不同的组合物构成,这种选定的组合物用于在遏止流动的情况下抵抗由于液体金属贴靠所述运作区而产生的热冲击;所述区域的每一个占据板件的整个厚度,通道区和运作区之间的连体化连接是构成通道区(1)的组合物和构成运作区的不同组合物在同一个模子中共压的结果,已经分别按所述区域预先放置在模子中的不同组合物随后进行连体化热处理,本发明还涉及所述板件的制造方法。球墨铸件等温淬火工艺以及纳米技术应用
<一>、球墨铸铁等温淬火工艺
1.设备
目前热处理使用的许多炉子和淬火槽都可用于球墨铸铁等温淬火。如果被处理的工件为加工后的零件.则需要使用保护气氛。此外在淬火时应能将工件快速转运至淬火炉中,才能得到所希望的机械性能。为满足仁述需要,通常使用盐一盐法对工件进行等温淬火。工件悬挂在挂具上,在盐浴炉中预热、加热、保温,然后迅速吊运到另一盐溶炉中进行等温淬火。淬火盐槽的尺寸应足够大,这样才能保证淬火时盐浴的温度一致,它的温差应在±5℃之内。
一般所用的淬火盐浴剂,大都由硝酸钠和硝酸钾配制而成。在使用时应及时清除盐浴中的污染,通常每周应对淬火剂清除污染一次。高温下不能使用标准的过滤系统,应将盐槽冷却至约200℃,在此温度下,标准过滤系统才可有效地使淬火剂得到满意的过滤。
2.工艺
要改善球墨铸铁件的等温淬火性能,一般应加大球墨铸铁中合金元素的含量。而且还应根据铸件的具体情况,及对铸件机械性能的要求,试验确定具体工艺。
球墨铸铁在奥氏体升温之前,应在350℃下预热,这样做的目的有二:一是除去湿气;二是减小热冲击,避免变形。
球墨铸件的奥氏体化温度,根据铸件的化学成分、原始组织及铸件壁厚及所需机械性能来确定。既要保证基体组织完全奥氏体化。不残留铁素体,又要避免奥氏体晶粒过大。一般奥氏体化温度为850~950℃。要改善淬火后的机加工性能,可将奥氏体化温度降至815~850℃,但这会使零件的抗磨损性能降低。过高的奥氏体化温度.会使奥氏体晶粒粗大,淬火后残留奥氏体量增加,并呈网状分布,导致机械性能降低。因而目前最常用的温度为880~900℃。
等温淬火停留的时间主要由过冷奥氏体完全转变为下贝氏体所需的时间来决定。若时间不足,必然有一部分过冷奥氏体来不及转变为下贝氏体,随后空冷时转变为淬火马氏体加少量残留奥氏体,这是不希望的。一般情况下,等温悴火时问和奥氏体化时间一样,工件断面厚度越大.则时间越长。
等温淬火温度对零件机械性能影响很大。象凸轮、蜗轮等需要高抗磨损的工件,应使用较低的淬火温度(250℃)较高的温度用于抗冲击和抗拉强度要求较高的传动零件。
当抗冲击和抗拉强度要求较高时,控制等温淬火的温度是非常重要的。每变化10℃,就会对抗冲击和延仲率产生明显影响。要控制淬火后工件的硬度.也应严格控制淬火时的温度。一般情况下.淬火温度取250~350℃之间,可获得较高的综合机械性能。
<二>、纳米技术在球墨铸铁件中的应用
纳米技术是近些年发展起来的一种微粒尺寸在1~100nm之间的高性能材料。由于纳米材料具有良好的耐磨性及抗高温性能,因此在表面处理中已成为一种新途径。但因受纳米材料成本之约束,目前能运用于实际生产的主要是纳米复合涂层处理。所谓纳米复合涂层处理,是指在零件表面涂覆一层含有纳米材料的复合涂层(在纳米复合涂层中除纳米材料外还有其他相存在),这种复合镀层具有超强的耐磨性和自润滑性,此外还具有高热稳定性和耐腐蚀性,并且因为涂层为多层复合,因此涂层与基体结合力及涂层的韧性非常高,大幅提高了零件的疲劳抗力,使零件的使用寿命大幅延长。
试验证明,如果将这种纳米复合涂层涂覆在球墨铸件表面,能使球墨铸铁件表面具有纳米材料的优异特性及复合涂层的综合力学性能。当然,尽管纳米复合涂层技术在实验阶段已取得不少成果,但目前能够真正实现商业化的纳米复合涂层技术主要还是添加性的纳米复合涂层技术。目前添加的纳米颗粒主要有纳米氧化物、纳米碳化物、纳米氮化物以及纳米金属和纳米合金,具体添加那种纳米颗粒应视球墨铸铁件表面要求的力学性能而定。
泊头市艺兴铸造厂(http://www.btyxzz.com)主要产品有搅拌机配件、灰铁铸件、减速机轴、机械加工、数控车床加工等业务。