向量共面的条件
如果两个向量a.b不共线,则向量p与向量a.b共面的充要条件是存在有序实数对(x.y),使 p=xa+yb
定义为:能平移到同一平面上的三个向量叫做共面向量。
三个向量共面的充要条件:
设三个向量是向量a,向量b,向量c,
则向量a,向量b,向量c共线的充要条件是:
存在两个实数x,y,使得 向量a=x向量b+y向量c.
(即一个向量可以写成另外两个向量的线性组合.)
如果两个向量a.b不共线,则向量p与向量a.b共面的充要条件是存在有序实数对(x.y),使 p=xa+yb
定义为:能平移到同一平面上的三个向量叫做共面向量。
三个向量共面的充要条件:
设三个向量是向量a,向量b,向量c,
则向量a,向量b,向量c共线的充要条件是:
存在两个实数x,y,使得 向量a=x向量b+y向量c.
(即一个向量可以写成另外两个向量的线性组合.)